
I IIII M IT I I I

U Form Approved

REPORT DOCUMENTATION PAGE OMB No. 07040188

Pubil teompig Duto for thiOti o € ate II€MAi k it o lon i estimated to aWage I hou, Pe W 1e300n$. mdud the tF t, t ISmtK0aM. etkig e 1akt l i oi , SUOM". #SOW" ad
muzintamlti the data needed. SMi cwffvetlng AMd tvvls~bV the witelon of Wimntion. Send onMlfh reg adW4 Itis burden eNtha Wft of & cihet NOW o ft IN M ,clo at hwulodo

is Sei vim. Okedorat lot Wlormatbio Operab', iNd Reomls. 1215 JMltmmt 01* HgwmlW. Ste 12D4, Aarbt.
%Rde ion Projet (074-0188). Wast 0b . OC 2000.

2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

AD-A227 140 September 1990 Special Technical

S. FUNDING NUMBERS

Tolerating Failures of Continuous-Valued
Sensors NAG2-593

6. AUTHOR(S)
Keith Marzullo

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Keith Marzullo, Assistant Professor REPORTNUMBER
Department of Computer Science
Cornell University 90-1156

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES'', 10. SPONSORING/MONITORING
DARPA/ISTO D T IC., AGENCY REPORT NUMBER

11. SU P PLEM EN TA Y N O TES W I ./ .- - '

12a. DISTRIBUTION/AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE
p,,rE 1F4IKELEASLE

~. .,.iIJ~ ~U 11.IIED -

13. ABSTR- r (Maximum 200 words)

One aspect of fault-tolerance in process control programs is the ability to tolerate
sensor failure. This paper presents a methodology for transforming a process control
program that cannot tolerate sensor failures into one that can. Issues addressed
include modifying specifications in order to accommodate uncertainty in sensor values
and averaging sensor values in a fault-tolerant manner. In addition, a hierarchy of
sensor failure models is identified, and both the attainable accuracy and the run-time
complexity of sensor averaging with respect to this hierarchy is discussed.

14. SUBJECT TERMS 15. NUMBER OF PAGES

29
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED
NSN 7540-0t .2bo 00 6s3tid F 2W5 (Pa. 2-8%

PStWmd &f AM9t OW. I-II1

2MI02



Tolerating Failures of Continuous-Valued
Sensors

Keith Marzi-ilo

TR 90-1156
Septeminer 1990



Tolerating Failures of Continuous-Valued

Sensors

Keith Marzullo

TR 90-1156
September 1990

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This work was supported by the Defense Advanced Research Projects Agency
(DoD) under NASA Ames Grant Number NAG2-593, Contract N001 40-87-C-8904.
The views, opinions, and findings contained in this report are those of the authors and
should not be construed as an official Department of Defense position, policy, or
decision.



Tolerating Failures of Continuous-Valued
Sensors

Keith Marzullo*
Cornell University

Department of Computer Science

September 14, 1990

Abstract

One aspect of fault-tolerance in protess control programs is the
ability to tolerate sensor failure. This paper presents a methodology
for transforming a process control program that cannot tolerate sensor
failures into one that can. Issues addressed include modifying spec-
ifications in order to accommodate uncertainty in sensor values and
averaging sensor values in a fault-tolerant manner. In addition, a hi-
erarchy of sensor failure models is identified, and both the attainable
accuracy and the run-time complexity of sensor averaging with respect
to this hierarchy is discussed. -) r
(Keywords: fault-tolerance, process control systems, real-time dis- .

tributed systems.

1 Introduction

A process control program communicates and synchronizes with a physi-
cal process. Typically, the program reads values from the physical process
through sensors and writes values through actuators, as shown schematically
in Figure 1. This paper is concerned with tolerating failures of continuous-
valued sensors.

The approach developed in this paper is outlined as follows: GRA&I
TAB fl
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actuator

process --

control
program _

sensor

Figure 1: A process-control program

1. A specification of the control program is written in terms of the state
variables of the physical system. For example, the specification of a

program controlling a chemical reaction vessel would refer to a variable
T whose value is assumed to be the temperature of the vessel.

2. Each physical state vaiable referenced by the specification is replaced
with a reference to an abstract sensor. An abstract sensor is a set

of values that contains the physical variable of interest. Uncertainty
in sensor values now becomes an issue, and the specification must be

re-examined and possibly changed to accommodate it.

3. The control program is written based on the specification produced by
Step 2. This program reads abstract sensors that are assumed to al-
ways contain the correct value of the corresponding physical variables.

4. For each abstract sensor referenced by the program written in Step 3,
a set of abstract sensors that fail independently are constructed. Each

abstract sensor is implemented using a concrete sensor, which is a
physical device that "reads" a physical variable', such as a thermc-
meter. This step will require some knowledge of the physical process
being controlled as well as the specification of the concrete sensor.

5. A fault-tolerant averaging algorithm is used with these replicated ab-
stract sensor values in order to calculate another abstrar t sensor that

'The concrete sensor need not sense the exact physical state variable of interest. For
example, an abstract temperature sensor could be constructed from a pressure gauge by
using Boyle's law: PV = nRT.
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is correct even if some of the original sensors are incorrect. The av-
eraging algorithm assumes that no more than f out of the n abstract
sensors are incorrect, where f is a parameter. The relation between n
and f depends on the way sensors can fail.

The resulting system will have a structure like that shown in Figure 2.
The rest of the paper is organized as follows. In Section 2, we define a

abstract concrete
sensor sensor

actuator _f 1 0
process abstract concrete

control sensor sensor

program F F

"averager" abstract concrete

sensor sensor

Figure 2: Replicated sensors

method of representing sensors that makes them amenable to replication and
discuss the effect of uncertainty on process control program specifications.
In Section 3, we discuss sensor failure models and present a sensor averaging
algorithm. Section 4 contains a demonstration of our methodology.

2 Physical State Variables and Concrete Sensors

A variable in a computer is quite different from a state variable in a physical
process. A computer variable takes on values from a finite domain, and
can assume only a bounded number of values in any finite time period.
A physical state variable, however, may take on any real value at arbitrary
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times. A convenient way to represent a physical state variable in a computer
program is as a function. The domain of such a function is typically time, but
it can be some other physical variable, depending on the safety properties
of interest.

A concrete sensor is a device that can be used to sample a physical state
variable. For example, a computer controlling a reaction vessel might have a
thermometer as a concrete sensor. A concrete sensor may interact with the
computer in a variety of way: the computer may poll the sensor, the sensor
may asynchronously alert the computer when a certain value is sensed, or
the sensor may send a stream of values to the computer where each value
indicates that the physical variable has changed by a certain amount. We
will assume that a concrete sensor a has a specification D,, and will call this
sensor faulty if it exhibits a behavior not consistent with its specification.

For example, consider a thermometer whose value is read by polling.
Suppose this concrete sensor returns a value T with an accuracy of E de-
grees and the computer obtains the sensor's value within 6 seconds of the
thermometer being sampled. If the time the computer program receives T
is i, then the specification of this thermometer is:

t(t, i) = 3t 0 : i - 6 < to < i: t - < T(to) < t + E/2

A concrete sensor is not very convenient mechanism. For example, with
the thermometer:

" The sensor has a limited accuracy. Network delay and processor
scheduling further limit the accuracy of the sensor.

" The control program may be interested in a temperature at a time the
thermometer was not sampled. A value must then be interpolated;

doing so requires knowledge of the physical process being monitored.

" Some properties of the concrete sensor, while important to the imple-
mentation, should be irrelevant to the specification used by the process
control program. For example, another thermometer might generate
an interrupt if the temperature rises above 100 degrees. This is an im-
portant property of the sensor-it allows for an accurate determination
of when 100 degrees is reached. There may be other way, to make the
same kind of precise measurement, however, for a sensor that is polled.

It would be convenient if the control program could be the same for
any method of measurement, as long as the measurement is accurate
enough.
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We will address these difficulties in two ways. The first problem cannot
be eliminated, so in Section 2.2 the effect of inaccuracy in specifications is
addressed. The other two problems, interpolation and data abstraction, are
addressed here by abstract sensors.

2.1 Abstract Sensors

An abstract sensor is a piecewise continuous function from a physical state
variable to a dense interval of real numbers. We will denote an abstract
sensor with an overbar over the variable, such as T(t). When possible, we
will simply write T if we are interested in the "current" value; that is, the
sensor value for the current value of t. Intuitively, interval T represents the
possible values of T, given the imprecision of the concrete sensor used to
compute T and any uncertainty in the physical process.

An abstract sensor T(t) can be represented as a pair of functions Tmin(t)
and Tm,.a(t), allowing T(t) to be the interval [Tmi,(t) .. Tmax(t)]. The
accuracy of an abstract sensor is the width of the interval, or IT(t)i. With
this representation, min T(t) = Tmin(t), max T(t) = T7max(t), and JT(t)[ =

Tmax(t) - Tm.i(t).
An abstract sensor T is correct if it is not too inaccurate and always

includes the value of the actual physical variable. More precisely, for some
upper bound acc-p on the accuracy of T,

T correct over D =e_.f

Vt E D: min T(t)_ <T(t):< maxT(t) A IT(t)I < accT

We assume that a failure of an abstract sensor can arise when the un-

derlying concrete sensor fails. As will be discussed in Section 3, a hierarchy
of failure classes can be defined:

e fail-stop failures (following [17]), in which a failed abstract sensor can

be detected 2;

* arbitrary failures with bounded inaccuracy3 , in which either IT(t) <

2 The value of a failed fail-stop sensor can be defined to be the empty interval whose
value is fe .. e - 1] for some value of e. The empty interval has the convenient properties
that it contains no points and intersects no interval, including itself.

'We use the term bounded inaccuracy to refer to bounding from above the accuracy of
an abstract sensor. Similarly, an abstract sensor is too inaccurate if the numeric value of
its accuracy is too large.

• ' , " a I I I I I i 5



accT is always true or accT is known, and thus abstract sensors that

are too inaccurate can be detected;

e arbitrary failures, in which an abstract sensor can fail arbitrarily.

Given a concrete sensor, it may not be easy to implement an abstract

sensor. In general, it may require considerable knowledge about the physical
process being monitored. For example, consider the specification 4( t, t) for
the polled thermometer. The specification, alone, is not sufficient informa-

tion to define an abstract sensor T, since we don't know how to interpolate
values between successive sensor readings. Suppose, however, we know from
the physical process being monitored that dT7F{ -- AT- This bound on the

change of T allows us to interpolate intermediate values with a known ac-
curacy. The abstract sensor T(t) can be defined as

!-c1-AT(t -i+) < T(t) < t+c/+ Ar(t -i+b for t > i

One can use this example as a recipe for writing abstract sensors, but the
resulting sensor may be too inaccurate for any practical use. For example,
if I "fj can be bound more tightly at certain known times, a more accurate
sensor can be constructed. In Section 4, the development of an abstract

sensor is shown in some detail.

2.2 Abstract Sensors in Specifications

The specification of a system typically includes a set of safety conditions:
predicates on the state of the system that the implementation must ensure
are always true. A safety condition on a process control program will refer-
ence physical state variables. For example, consider a reaction vessel with

a pressure relief valve. One safety condition might be that whenever the
pressure p is greater than some ceiling p, the valve must be open. We
could write this safety condition as p > Paz - open, where open is a state
function that is true when the valve is open.

The specification of a process control program will have to be changed
when expressed in terms of abstract sensors. It is not possible to take a con-
trol program written in terms of physical state variables and, for each ref-
erence to such a variable, substitute a reference to a corresponding abstract
sensor. Consider p > P,.a=- open. The condition that results from replac-
ing the physical state variable with an abstract sensor is P > pma,=_ open;
one must decide what the term p > Pmaz means.
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Let S be a predicate on the system state and V be the set of physical
variables mentioned in S that will be accessed through abstract sensors. We
need another condition S' that contains no references to any vi E V but
may instead contain references to Vi. The only constraint on S' is that it
reduces to S when the abstract sensors have perfect accuracy 4:

(S'A i I = 0) * S "

There are several ways such an S' can be constructed. We could replace
all references to vi in S with references to the midpoint of i. However, if all
values in -9 have the same likelihood of being valid, then there are only two
reasonable alternatives. We can either require that all points in -i5 satisfy S
or that there ezists at least one point in i that satisfies S. More precisely,
for each physical variable vi the condition S can be generalized as

dddefS' df=Vv, EU.:S or S'=d vef J:= Vv E V : 5or S 4_ 3vi E vi : S

The generalization of S cannot be done automatically, since it is really a
refinement of the problem specification. Ideally, one would like to strengthen
S so that states excluded by the safety condition are still excluded. For
example, we might want to assert that a catalyst is injected (denoted by
the state function C) only when the pressure is above a minimum value:
C => (p > Pmi). In this case, the state we are trying to avoid is one
where the catalyst is injected at too low a pressure, and we can strengthen
C > (p > p,,) to C * (Vp E 1 : p > Pr.,i).

We may find, however, that a specification cannot be strengthened in a
meaningful way. The property p > Pma = open is an example. Changing
the property to (Vp E P : p > Pmaz) = open will allow states with p > Pm.
and -,open, and changing the specification to (3p E - : p > Pmax) = open
will allow states with p _ Pmar and open. Unless we can guarantee that
JpJ = 0, the program's specification must be changed. Here, we are probably
more interested in avoiding an explosion of the vessel. If so, the condition
we want is (3p E P : p > Pmaz) =_ open, and we would accept the fact that
the pressure valve may be unnecessarily open.

It shouldn't be surprising that, in some cases, a property of a specifica-
tion must be changed (as compared to being strengthened) when references

4The rxprewion S_ is S with all occurrences of physical state variable vi changed to
's

abstracL sensor fi.

7



to physical state variables are replaced with references to abstract sensors.
Using abstract sensors exposes uncertainty in the physical process' state and
a specification may have been written implicitly assuming no such uncer-
tainty. Of course, specifications are sometimes written with such uncertainty
explicitly mentioned. For example, an informal expression of the pressure
relief valve property might be "if the pressure rises to within 0.1 millibars of
P, a then the relief valve must open". In our notation, this property would
be expressed as ((3p E P : P > P.a) = open) A (IPI - 0.1).

3 Fault-Tolerant Abstract Sensors

Given n independent abstract sensors and some assumptions about failures,
we would like to construct an abstract sensor that is tolerant of failures. We
will first present an algorithm that constructs a sensor containing the correct
value given that no more than f of the original sensors are not correct. We
will then consider how this algorithm performs with different failure models.

3.1 Fault-Tolerant Sensor Averaging

Let T, and Tj (i # j) be two abstract sensors for the same physical value
T. If Ti and Ti both contain the correct value, then the intervals -T and Tj
must intersect, and their intersection must contain the (unknown) value T.

If f or less sensors do not contain the correct value, then any (n - f)-
clique, or set of n - f mutually intersecting sensors may contain the correct
value, since they each share a common value. Conversely, any point not
contained in at least n - f intervals cannot be the correct value; if it were,
then there would be more than f sensors that do not contain the correct
value. So, the cover of all (n - f)-cliques must contain the correct value.
This gives us an abstract sensor averaging algorithm.

Algorithm 1 Fault-tolerant Sensor Averaging

Let S be a set of values taken from n abstract sensors, and sup-
pose the abstract sensors are of the same physical state variable
where their values were read at the same point in their domain
(e.g. at the same time). Assuming that at most f of these sen-
sors are incorrect, calculate nf,.(,) which is the smallest interval
that is guaranteed to contain the correct physical value.

8



Implementation: Let I be the smallest value contained in at least
n - f of the intervals in S and h be the largest value contained in
at least n - f of the intervals in S (by assumption, these values
must exist). Let nfl, (S) be the interval I .. h].

Algorithm 1 is inexpensive-it can be implemented in O(n log n) time.
Appendix B gives an implementation that has this running time.

The accuracy of nf,n(S) depends on the value of f, as illustrated in
Figure 3. In this example, the value of fo,,(S) is the empty interval because
it is impossible for both intervals a and b to contain the correct value, at
least one of them must be incorrect. In general and when defined, No,n(S) is
the intersection of the intervals in S, nl..,n(S) is the cover of the intervals
in S, and IJn,,,(S)J Infl,(S)l if f < f'.

N1l,5

a b2,

n 4 ,5

Figure 3: Intersection with f = 1, 2,3 and 4

One consequence of the definition of nfln(S) is that for f > 0, Nfl,(S)

can contain values that cannot be the correct value. For example, Figure 4
shows the intersection of three intervals a, b and c. If f = 1 then the correct
value must be within 1I or 12. Algorithm 1, however, would calculate the
interval I. The points between Il and 12 are added to preserve the "shape"
of the abstract sensor as seen by the control program.

It is instructive to compare fl,,(S) with n-modular redundancy [20]
(NMi). In NMi, n independently produced values of a variable are presented
to a voter that selects the majority value as its output. By doing so, the

9



voter can mask up to f incorrect inputs where n > 2f + 1. The function
nlf.,(S) resembles an NMR voter, except that it accepts intervals rather than
points as inputs and it produces the most accurate value possible as output
for any value of f : (0 < f < n). If the inputs to nf,n(S) are point intervals
(that is, have a width of zero), then the NMR voter and f.,(S) produce the
same output when n > 2f + 1.

I I l l

I I I I

I I I I
S I I

Ii 'r- :- 12
a c

Figure 4: Intersection with n = 3 and f = 1

The relation of f to n (and hence the accuracy of nf,n(S)) depends on
the failure model that is assumed. We will first assume arbitrary failures

(both with and without bounded inaccuracy) and then consider a fail-stop
failure model. We assume that no more than f of the n sensors can be faulty
and that once failed, a sensor remains failed.

3.2 Arbitrary Failures

The width of an interval that is an abstract sensor value determines the
sensor's accuracy. If the ratio f/n of the number of faulty to non-faulty
abstract sensors is too large, then one cannot bound the inaccuracy of the

resulting abstract sensor. The following theorem bounds f/n. Define the
functions mini and max to be the ill smallest and largest values of a set
of n values respectively. Note that mini is the same as max,-,+x. For
example, if S = {13, 14, 15} then min3(S) = maxi(S) = 15.

Theorem 1 1ff < [-+'] then }f,,,(S)I min2f+I{ISI : s E S).

The proof of this theorem is in Appendix A.
If f 2! [(n + 1)/2j then the derived interval can be more inaccurate than

any sensor in the system. Theorem 4 in Appendix A formally states this
property. An example is shown in Figure 5. Suppose the three sensors a, b

10



and c are "maliciously" faulty. They can make nlf,(S) as inaccurate as
desired by choosing appropriately distant values from intervals d and e.

a c d

b e

I !

I !

Figure 5: Intersection with n = 5 and f = 3

One property of nl,,,(S) is that, depending on the values of S. n,,(S)
can be more accurate than any sensor in S. Figure 6 illustrates this property.
Such a value of S can result from different delays, errors, or other sources

of uncertainty that arise in computing the value of the abstract sensors
comprising S. This property makes replication of abstract sensors attractive
not only for tolerating failures, but also for increasing the expected accuracy
of a sensor's value.

a
t i

i i

I Id

I I

I I

I I
I I

I I

Figure 6: Intersection with n = 5 and f = I

If n = 2f + 1, however, then the accuracy of nfl, (S) is limited, in that
it cannot be more accurate than the most accurate sensor in S. This is
illustrated in Figure 7 where f = 1 and n = 3; here, the only way we could
change sensor c so that it contains values outside of nl,,(S) would be to

11



make c more inaccurate than either a or b or to make c detectablv faulty (as
discussed in Section 3.3). It is, therefore, advantageous to have n > 2f+ 1 for
a system with arbitrary failures. Theorems 5 and 6 in Appendix A formally
state this property.

~c
I I
I I

a
Ib

I I

I I
I * I~

I I

Figure 7: Intersection with n = 3 and f = 1

Theorem 1 bounds the accuracy of a derived abstract sensor in terms
of the accuracy of one of the abstract sensors 9i used in its construction.
Such a bound is useful only if Ji is not faulty-in particular, if 1-i( I_ acci.
Hence, Theorem 1 only applies for arbitrary failures with bounded inac-
curacy. However, if this bounding sensor could have an erroneously large
inaccuracy, then the bound is not meaningful. Consider the sensors shown
in Figure 8. If sensor c is erroneously inaccurate, then the value of nl,3(S)

is as inaccurate as c. Thus, the ratio f/n of the number of faulty to non-
faulty abstract sensors must be smaller than that stated in Theorem I when
sensors can have unbounded inaccuracy. Theorem 2 gives this bound on
f/n.

a ---------I !

I i I

I I

Figure 8: Intersection with n - 3 and f - 1
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Theorem 2 LetC be the (unknown) subset of S that are correct. Iff < <Lj

then I ni,, (S)i - mini+{Is : s E C}.

The proof of this theorem is simple: from Theorem 1,

Infn(S)l _ max, 2 f{V$ E S}

For JfA,,(S)j to be bounded by a correct sensor, n - 2f > f and so n > 3f.
The worst case is when f faulty sensors are the most inaccurate, so

1fl,t.(S) min+i{ Isl : s E C}

0
Under the hypothesis of Theorem 2, a minimum of four sensors are nec-

essary to tolerate a single faulty sensor. Figure 9 illustrates this case-even
if sensor d has an erroneously large inaccuracy, I n,,4 (S)l is bounded by a
nonfaulty sensor.

! !

a -- -

I I

, , b

,- d
I I

I I

* I

Figure 9: Intersection with n = 4 and f = 1

3.3 Other Issues on Failure

If f' < f sensors can be detected as failed then they can be removed from
S, and n and f can be reduced by f' before computing nf,n(S). By doing
so, the ratio f/n will be decreased, thereby improving the bound on the
inaccuracy of nf,,(S). In a fail-stop failure model, all sensor failures are
detectable, meaning that up to n - 1 failures can be tolerated and nn(,S)
will be as accurate as the most accurate nonfaulty sensor. Additionally, the
running time of Algorithm 1 with fail-stop sensors is 0(n).

13



We can use Algorithm 1 to detect some failed abstract sensors assuming
an arbitrary failure model. This algorithm is very simple: any sensor in
S that does not intersect nfl,(S) cannot contain the correct value, and is
therefore incorrect.

Algorithm 2 Detecting failed sensors.

Given n sensors S and a maximum number of faulty sensors
find a subset of the sensors V C S that are incorrect.

Implementation: Compute nf,,(S) using Algorithm 1. Then.
D= {s : 3 E S A s n (nfl,(S)) = 0}.

It is likely that Algorithm 2 will fail to detect some of the incorrect
sensors. For example, using Algorithm 2 with the sensors in Figure 4 yields
V = 0; even though we know that only one of the two sensors a, c must be
incorrect, we cannot tell which of the two is incorrect.

So far, we have assumed that once a sensor fails it remains failed. This
assumption may not be realistic for sensors, since an abstract sensor main-
tains no state. It seems natural to assume a sensor may occasionally fail in
an apparently malicious way and then "heal" itself and subsequently yield
correct values. So, a natural extension to the arbitrary failure model is to de-
note the faulty sensors at time t as a function .F(t) such that Vt : I.F(t) _< f.
Unfortunately, we cannot construct a correct abstract sensor under these
conditions; the averager might be unlucky and each time read a (temporar-
ily) incorrect abstract sensor. We must also guarantee that there exists a
period II such that the number of failures in all time intervals of length II
is bounded:

MI > 0 : Vt, t' : t < t' < t + HI :Iu '(t')l <5 f.

If Algorithm 1 obtains values from each concrete sensor within II time units
then it constructs a correct abstract sensor. In the limit of large IT, this
model reduces to the earlier arbitrary failure model.

4 Example

The methodology presented in this paper requires some thought to use.
An original specification may have to be changed to accommodate abstract
sensors, and it may be difficult to construct a set of independent abstract

14



sensors. In this section, we show an example of how a specification can be
converted from one that uses physical state variables to one using abstract
sensors. We also show how an abstract sensor can be implemented from a
concrete sensor.

As part of the Cornell Real-Time Reliable Distributed Systems (RR)
project, we are deriving correct process control programs from specifications.
One of the problems we have chosen is that of a train traversing a sequence of
n adjacent track segments of possibly unequal lengths. Assume that segment
i spans track locations ci through ci+ 1 where (Vi : 0 < i < n : c, < ci+1 ). A
train has position x(t) and velocity v(t), has zero length 5 , starts at position
co = 0 and moves in the direction of increasing x (towards cl). Each track
segment has an associated minimum and maximum speed mini and maxi; if
the train exceeds these limits, it may derail. Additionally, there is a random
communications delay associated with all messages in the system that is
bounded by 6 seconds.

A track circuit a(q,r) is a concrete sensor associated with a span of track
q < x < r. A nonfaulty track circuit returns true iff the train occupies any
part of the circuit's span at the time the circuit is polled. We will assume
that there are M track circuits.

The safety condition for correct operation of the train is that it not
derail, or

S d=f Vt, i : 1 < i < n : ci !_ x(t) :_ c,+ 1 => minj _ v(t) !_ maxi

S is expressed in terms of physical variables, so it must be changed to
be expressed in terms of abstract sensors. The obvious condition is

= Vt, i 1 < i<n:

(3Z E X(t) : ci z < ci+1) => (Vv E v(t): mini < v < maxi)

since this also excludes all unsafe states (at a penalty of running the train
conservatively).

Since the condition 5' refers to the abstract sensors 7 and U, the control
program will need to refer to these sensors. We will show how an abstract
position sensor Yi can be constructed from the track circuits ca(q,r). The

simplest way to do this is to assume a bound on the velocity of the train
v < v,,,,. Define the global array of M elements:

'In Appendix C we show that controlling a train of length L > 0 is equivalent to
controlling a train of zero length.
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var train[i]: {before, in. after} := before, ... , before:

Define a polling process for each track circuit a(q,,. Note the delay is
represented by a delay statement; the implementation must ensure that no

more than A seconds elapse between successive polls of a sensor where A is
small enough so that the polling process does not "miss" the train traversing
the track segment it is monitoring: A < (r - q - 6 Vmax)/Vmar. Assertion I
is a loop invariant, and t is the current time.

process Poll[i =

begin
{I : train[i] = before => 0 < x(t) < q + 6vmoz A

traini] = in =* q < x(t) < r + bvmaz A

traini] = after z- r < x(t) < c,,}
do true -

delay A;
if o(q,r)A (tran[i] = before) --+ traix[i] := in
II -'a(q.,r)A (train(i] = in) -- train(i] := after
o -'q.,) A (train[i] = before) --- skip

oa(q,r) A (traini] = in) - skip
0 (traini] = after) -- skip
fl

od;
end

The definition of the abstract sensor comes from the loop invariant I
and the distance the train could have moved since the last time w(qr Was

read:

Z" = if train[i] = before -- [0 .. q + (6 + A)vaz]

f traini] = in --. (q .. r + (b + A)vmaz]

0 train[i] = after -- [r .. c,,]

Fault-tolerance is achieved by constructing an abstract position sensor from
each track circuit and then using Algorithm 1. Additional fault-tolerance
could be achieved by replicating the track circuit for each track circuit.

The abstract sensor developed here is too simplistic to be of any real use.
Correct track circuits far away from the train give very inaccurate bounds

on the train's location, and by Theorem 2 the accuracy of the fault-tolerant
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abstract sensor will be poor for any reasonable f. In the actual system,
we make use of an abstract sensor 70(t) whose value is derived from the
initial condition x(O) = 0 and from the commands sent to the train. We
call this abstract sensor a model sensor since if it is incorrect, then either
the control program is faulty or the specification of the environment was
incorrect. The model sensor is initially very accurate, and can be used
to detect some of the failures of the abstract sensors Yj. Having a model
sensor also simplifies the computation of the other abstract sensors. The
train has the property that if an abstract sensor -i is computed from a
fixed set of track circuit polls and the commands sent to the train, then
the interval [Yi(t).min - Zo(t).min .. T(t).max - To(t).max] is a constant.
So, the implementation of Ti computes an accurate value of [Yi(t).min -
Yo(t).min .. Yi(t).max - 2o(t).max] at the time t it notes the track circuit
first coming on, and computes f(t')i for t' > t as ['(t').mino + "i(t).min -
:o(t).min .. 7(t').maxo + Yi(t).maz - Yo(t).max]. The implementation of T,
can do the same computation when the track circuit subsequently goes off,
and if the two resulting values of the abstract sensor do not intersect then
the abstract sensor is faulty.

For our program, it is necessary to ensure that that I7(t)i < accr where
acc is length of the shortest track segment. Given a value of A, one can
estimate the accuracy of abstract sensors near the train, as these will be
the most accurate. The abstract sensors Y, have a known bound on their
accuracy, so Theorem 1 can be used to find the maximum value of f that
will guarantee I (t)I < ace2.

5 Discussion

This paper presents a five-step process, through which a program written in
terms of physical state variables can be transformed into one that reads the
physical state variable through a set of concrete sensors, some of which may
be faulty. The degree of sensor replication depends on the failure model be-
ing assumed. Figure 10 summarizes the maximum number of faulty sensors
that can be tolerated for the three failure models considered in this paper,
assuming that an unboundedly accurate sensor is desired.

The work presented here is part of the general problem of input reifica-
tion [9]. The results in this paper are a generalization of the work done by
the author and presented in [15,14]. This earlier work looked at the problem
of clock synchronization in a distributed system. A dock is a special kind of

17



Failure Model 1 fax lmin n: f = 1 j rinr: f= 2
arbitrary failures, .(n - 1)/3j 4 9
unbounded inaccuracy
arbitrary failures, L(n - 2)/2J 4 6
bounded inaccuracy
fail-stop failures n - 1 2 3

Figure 10: Maximum failures for different error models

sensor, in that the physical process it senses can be expressed simply.
The approach presented in Section 2.2 concerning transforming specifi-

cations is novel. Much work has been done on expressing and determining
the validity of properties that refer to real time (for example, [7,19]),.but
usually these specifications are typically written in terms of physical state
variables where, for each variable, an a priori upper bound on its accuracy
is known.

The methodology presented in this paper is related to the state machine
approach [18,10]. A set of sensors of the same physical value can be thought
of as a set of identical processors that return intervals rather than scalar
values. In both cases, failures are masked by replication and voting.

Studies on hierarchies of failure models (for example, (2,16]) originally
arose in the context of the agreement problem [5]; a problem not addressed
here. If the control program were to be replicated, then the processes of
this program would need to use an agreement protocol to disseminate the
sensor's values [3,4,8]. There has been work on agreement on the value
of sensors. For example, the inexact agreement problem discussed in [13]
relates the accuracy of the agreement value with respect to the number of
rounds the protocol executes. A different approach to agreement among
sensors is taken in [121, in which sensor failure is not considered.

The methodology presented here is incomplete. For example, there are
other kinds of sensors than those considered here; for example, discrete
sensors like one denoting whether or not a door is open, or multivalued
sensors like one that returns the altitude and azimuth of an airplane. We
are extending the material in this paper to accommodate these more general
sensors.
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A Proofs

The four theorems in this appendix give upper and lower bounds of flf(S)j.
We need the following two definitions:

Definition 1 If S is a set of intervals, a c-clique of S is a subset S' of S
where IS'l = c and all the intervals in S' mutually intersect.

Definition 2 A set of intervals is c-reduced if each interval in S is a mem-
ber of a c-clique.

Note that a graph is (n- f)-reduced if and only if Algorithm 2 computes
the empty set.

The upper and lower bounds of Ifl,n(S)I are as follows. Theorem 1 is
the same as Theorem 3; it is repeated here for clarity:

Theorem 3 LetS be a set consisting of n intervals. IfO f< L(n+ 1)/2J
and nf,.(S) A 0, then I n,.(S) _< min 2j+1{I'-I : 3 E S}.

Theorem 4 Given a set {,t,...,,} of n lengths and n > f > L(n+l)/2J,
then for any length A 2! min{e, t2 , ..., }, there exists a set of n intervals
S = {f1,7 2,..., 3.} whereVi : i < i < n :1-i = ti and Inlh,,(S)I = A.

Theorem 5 LetS be a (n- f)-reduced set of n intervals. If n > f > [n/2J
and nf,.(S) $ 0, then Inf,n(S)I > max2(.-f)-.11 : 3 E S}.

Theorem 6 Given a set {t1,t 2,...,fn} of n lengths, an arbitrarily small
length e, and 0 < f < Ln/2j, there exists a (n - f)-reduced set of n intervals
S = {IJ 2 ,...,J} thereVi i < i < n: 1d = ti and Ifn,,,(S)j = e.

Theorem 4 can be shown by construction. Let S consist of the following
two cliques:
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* C, containing n - f intervals, where each interval in this clique has

a minimum value of u, and by definition of A, a maximum value no
larger than u + A;

e C2 containing f intervals, where each interval in this clique has a
maximum value of u + A, and by definition of A, a minimum value no

smaller than u.

By hypothesis, fn/21 = [(n + 1)/2J _< f < n, or 2f _> 2fn/21 n

and so f >_ n - f meaning both cliques are contained in nl,,(S). So.

n.,,(S) = [u .. u + A] and the theorem follows. 0

Theorem 6 can also be shown by construction. Let S consist of two
cliques:

" C1 containing Ln/2J intervals such that L(n - f)/2J intervals have a
maximum value of u+e and the remaining Ln/2J - [(n-f)/2j intervals
have a maximum value less than u;

* C2 containing rn/2] intervals such that [(n - f)/2] intervals have a
minimum value of u and the remaining [n/21 - [(n - f)/21 intervals
have a minimum value greater than u + e.

By hypothesis, 0 < f < [n/2J or [n/2J _ n/21 < n - f !_ n, and so

neither C1 nor C 2 are entirely in nfl,,(S). However, n - f intervals intersect
over the interval [u .. u + E], and the theorem follows. 0

To prove theorems 3 and 5, we will need a few lemmas.

Lemma 1 Let S be a set of n intervals where S contains at least one c-

clique and all c-cliques in S have exactly i intervals in common with each
other. Then, n > c > i and n > 2c- i.

Proof: since S contains at least one c-clique, we know n > c. Fur-
thermore, since all c-cliques in S have exactly i intervals in common, each

c-clique must have at least i intervals, or c > i.

If c = i, then the smallest graph satisfying our assumptions is a single

i-clique, or n = i = 2c - i. If c > i, then S must contain more than one
c-clique, for otherwise the single c-clique has c > i intervals in common with

itself. The smallest such set of intervals consists of two c-cliques sharing i

intervals. Each clique has c - i intervals not in common with each other, or

n = i + 2(c - i) = 2c - i. 0
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Lemma 2 Let S be a set of n intervals where S contains at least one c-
clique. If n < 2c, then all c-cliques in S have at least 2c - n intervals in

common with each other.

Proof: by contradiction. Suppose that all the c-cliques in S have exactly

i' intervals in common with each other, where i' < 2c - n. By lemma 1.
S contains at least 2c - i' intervals, or n > 2c - i'. Rearranging the last
inequality, we get i' > 2c - n, which contradicts our hypothesis. 0

Lemma 3 Let -9 E S be any member of all maximal cliques of S. The cover
of the intersection of the maximal cliques is no larger than 1-].

Proof: The intersection of any maximal clique cannot contain any point

outside of , since by definition that point is not in an intersection containing
j and j is a member of each clique. The cover only adds points between the
intersections. Since S is a set of intervals over the reals, 3 must contain all
points between the maximal cliques, so the cover does not add any points in
s. Since all the points in the cover are also in 3, the cover cannot be larger
than 131. 0

Theorem 3 can now be shown. From the definition of nl,,(S), the

maximal clique in S must contain at least n - f intervals, for otherwise
nf,,(S) = 0. By assumption, f : L(n + 1)/2j or n < 2(n - f). By lemma 2.
at least n - 2f intervals intersect all cliques. By lemma 3 the cover of the

intersection cannot be larger than any of these n - 2f intervals. The cover,
however, may be larger than any of the remaining 2f intervals. In the worst

case, these remaining intervals are the smallest ones in S, and the theorem
follows. 0

Lemma 4 Let S be a c-reduced set of n intervals, and let the intervals 3i

in S be ordered such that min 3, 5 min mj, if i < j. Then, the intervals

Y1 ,7 2 , .. .T§ form a c-clique.

Proof: by induction. The lemma is trivially true for c = 1 since any
interval is by itself a 1-clique. So, we assume the lemma holds for c = k

and show that it holds for c = k + 1. Let S be a (k + 1)-reduced set
of intervals. If a set is (k + 1)-reduced then it is k-reduced, so by the

induction hypothesis the intervals 1,3 2 ,.. . form a k-clique. If 3k+j does
not intersect some interval 3T : 1 < i < k, then all intervals 3j : j > k + 1
also do not intersect 3j, and so 3i is not a member of a (k + 1)-clique. This
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contradicts our assumption that S is (k + 1)-reduced, and so k+i mUst
intersect each interval s1, 32,...3,, and the lemma holds. C

The same argument can be used to prove the following lemma:

Lemma 5 Let S be a c-reduced set of n intervals, and let the intervals-,
in S be ordered such that max-i _ max -9j if i < j. Then, the intervals
sT, s2,. .. c form a c-clique.

Lemma 6 If S is a (n - f)-reduced set of n intervals, then

nf1,,(S) = [minf+l {min 9: s E S} .. max,_+ 1 {max 3:s E S}]

Proof: this lemma follows directly from Lemma 4, Lemma 5 and the
definition of nf,,(S). 0

Theorem 5 can now be shown. From Lemma 6, all intervals intersect
nl,,(S) and there are exactly 2(n- f - 1) (not necessarily distinct) intervals
that extend outside of nl,,(S). This means that there are at least n - 2(n -
f- 1) = 2(f+ 1)- n intervals that are completely contained by n.,,(S). So,
Inf,n(S)l r min2 (f+l)_n{s : 1 E S} or Inf,,n(S)l 2! max2(n-f)-l{: s G S}.

B Algorithms tor Computing nff,(S)

This section contains some algorithms for computing nf,,(S). A set of ab-
stract sensors are isomorphic to a class of graphs called interval graphs,
which in turn are members of the class of triangulated graphs. Such graphs
axe interesting in that many problems, such as coloring, clique, stable set
and clique cover can be solved for triangulated graphs in polynomial time.
A good reference on triangulated graphs is [6], which includes efficient algo-
rithms that solve the above problems.

The value of nj,.(S) is [I .. hi where I is the smallest point contained in
n - f intervals and h is the largest point contained in n - f intervals, and
where a point z is contained in an interval 3 if and only if min j < x <
max W. Suppose that there are a intervals 3 in S such that min j _< " and
that there are b intervals Y in S such that max Y < x. Any interval not
counted in a cannot contain z, and the intervals counted in b are those that
were counted in a but cannot contain x, so z is contained in exactly a - b
intervals.
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Let v be an array of 2n pairs where for each -, E S, v2 , (min s,. 1)
and ',2,+l = (max -,, -1). Given a point x,

a = ,[21

and
b = - v1(2]

Vi:v.[I]<X

AV[2]=-1

or

number of 3 ES containing x = a - b = vj[2 + > v,[2]
V,:v,[1]<x Vi. u41]=X

Av,[2]1=

Computing the number of intervals in S that contain x can be made

linear if v is sorted. Define vi < vi = (v,[1] < v[1]) V (vi[1] = v[11] A v,[2] >
v)[2]), and let v' be v sorted with respect to <. Then,

max ):vj[l]_<A(-,. [11=-) = .(,, [2)= 1 )

number of 3 E $ containing x E v,[2] (1)
s=0

Recall that I is the smallest point contained in n - f intervals. Thus, I is
the smallest z that makes Equation 1 equal to n - f, which is vlo[1I] where

j

low = man j: ~vL[21 = (n - f)
i=O

Similarly, h is the largest point contained in n - f intervals, which is the

largest x that makes Equation 1 equal to n - f. This point is also the

maximum value of some interval such that aU points greater than z are
contained in no more than n - f - 1 intervals, or h is vhigh[1] where

high = max j: >3 v[2] = (n- f - 1)
i=O
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Both low and high can be computed from v' in 0(n) time. and r' can be
computed from ' in O( n log n) time, so the overall running time is O( n log 0.

There are two cases for which flf,(S) can be calculated faster than
O( n log n):

1. nf,_.n(S) is the cover of S, or I is the smallest minimum value of the
intervals and h is the largest maximum value of the intervals. For our
purposes, however, this case is not very interesting.

2. If all of the intervals in S mutually intersect, then all of the minimum
values of these intervals are less than or equal to the smallest maximum
value of these intervals (this can be tested for in O(n) time). Under this
condition, the array v' consists of all of the minimum values (having
v,[2] = 1) followed by the maximum values (having v, [2] = -1). Thus.
I is the f+l' largest minimum and h is the f+ ±1" smallest maximum.
both which can be calculated in O(n) time [1]. If f = 0 or a fail-

stop failure model is assumed, then we are interested in the value of
n 0 ,,(S), which requires that all intervals mutually intersect and can
be calculated trivially in O(n) time.

C Train Length

In the example of Section 4, we assumed the train had zero length. This
is not an unreasonable assumption, since we can show that for every' train
of length L on a track K, there exists a track K' such that a zero-length
train is constrained in exactly the same way as the original train on K. In

this section, we show how to determine the track K' from L and K. The
method is an example of transforming to configuration space [11].

A track K is defined by three sets (Vi : I < i < n : {cj}, {mini}, {max,})
where c, is the location of the end of track segment i, mir. is the minimum

allowable speed on segment i and maxi is the maximum allowable speed on
segment i. If the train has length L and the tail of the train is at x, the
safety condition is that all parts of the train satisfy the speed constraints.
or

SL(X, V)d

Vz', i :x < x' < z + L,< i < n : ei x x' < ci+ I. mni v < max,
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Suppose we could find a track K': (Vi: 1 < i < n' {,}, {min }.{max,})
such that

SL(x, V) = (50(x, V) Vi < n' : ' <_ ' _c

So is the safety condition for a zero-length train on track K' which is
constrained in exactly the same way an L-length train on the original track
is constrained. If we can find K' then we can write a program that controls
a zero-length train on K', and this program will also control the L-length
train on K.

Define the two functions

Min(L, x) def= Vj z < cj  z + L max min1
Max(, z)def

Max(Lx) = Vj x <c <x + L m i n maxj

These functions determine the actual speed bounds the train must follow
when at X. With them, SL can be rewritten as SL : Min(L,x) v t <

Max(L, x).
We can now find the values of K' that allow SL(x, v) to be rewritten as

So(x, v). Both Min(L, x) and Max(L, x) are piecewise constant functions, so
we can define the track segments of K' to be the spans where both Min( L, x)
and Max(L,x) are constant. Let ci be the union of the points of inflection
of Min(L, x) and Max(L, x), and let

min = lim Min(L, ci + b)
6-+0

mai= lim Max(L,ci + b)
6-+0

Figure 11 shows an example of K' given K and L. Each track segment is
drawn with the maximum speed above the segment and the minimum speed
below the segment. Note K' is shorter than K by L, since the end of the
train cannot traverse the whole length of K without the train leaving K.
Here, K and K' have the same number of segments; in general, K' can have
up to twice as many segments as K.
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Figure 11: Configuration Space
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